ADDITIONS AND CORRECTIONS

2006, Volume 110A

Patrik Johansson: Intrinsic Anion Oxidation Potentials

Page 12077. In the original paper¹ prediction of anion limiting oxidation potentials (E_{ox}) was made by computing the vertical transition energy (ΔE_v) as the electronic energy difference between the anion and the corresponding neutral radical. In addition, the vertical free energy difference (ΔG_v) was computed via addition of ΔG_{solv} and further strengthened as a necessary improvement of ΔE_v by an empirical correction vs experimental data using the anion volume as a parameter (ΔG_v^*). However, an incorrect data correction was made using the Li⁺/Li⁰ vs SHE (-3.04 V) rather than the Li⁺/Li⁰ counter electrode value (-1.46 V). Thus the computed data in ref 1 should be corrected by 1.58 V. A new Table 1 and Figures 2-4 are presented here. The change is uniform and thus does not change any interanionic comparisons, but clearly the comparison vs experimental data is now more favorable for the $\Delta E_{\rm v}$ measure than in the original paper (Figure 3). The smallest standard deviation of ΔE_v vs $E_{\rm ox}$ is obtained for the VSXC functional, but clearly the free energy correction term ΔG_{solv} must now be severely reduced in size and in the present Figure 4 the default medium water¹ has been replaced by a solvent with a dielectric constant of 5.0

Figure 2. Updated $-E_{HOMO}$ vs E_{ox} for different computational levels.

and a radius of 6.0 Å. Yet, as seen in Figure 4, the role of the free energy correction is dubious—the standard deviation in fact increases, although a smaller rms error is obtained. A volume correction does not have any substantial effect. To conclude, for a prediction of intrinsic anion oxidation potentials, the direct use of vertical transition energy (ΔE_v) as a measure seems agreeable if an acceptable computational level is used, e.g., the

Figure 3. Updated ΔE_v vs E_{ox} for different computational levels.

Figure 4. Updated ΔE_v and ΔG_v vs E_{ox} using the VSXC functional.

anion	$E_{\rm ox}$ vs Li ⁺ /Li ⁰ (V)		$E_{\rm HOMO}$ vs Li ⁺ /Li ⁰ (V)						$\Delta E_{ m v}$ vs Li ⁺ /Li ⁰ (V)					
		ref	MNDO	AM1	HF	B3LYP	PBE	VSXC	MNDO	AM1	HF	B3LYP	PBE	VSXC
AsF ₆ ⁻	6.5-6.8	5,9	n/a	n/a	-10.21	-4.34	-4.60	-2.82	n/a	n/a	8.77	6.88	6.93	6.05
PF_6^-	6.3-6.8	5,9	-8.19	-7.31	-9.63	-3.80	-4.05	-2.28	7.75	7.36	8.16	6.47	6.49	5.65
BF_4^-	6.2-6.6	5,9	-7.10	-5.76	-8.85	-3.05	-3.31	-1.52	6.73	5.34	7.52	5.88	5.91	5.22
TFSI ⁻	6.1-6.3, 5.3	5, 9, 10	-6.78	-6.24	-6.88	-2.85	-3.05	-1.85	5.25	5.91	4.78	5.40	5.36	4.52
TriTFSM ⁻	6.1,5.5	9,10	-7.23	-7.15	-6.48	-3.16	-3.34	-2.17	5.39	6.65	4.20	4.87	4.83	4.57
Tf ⁻	5.9-6.0, 5.0	5, 9, 10	-5.49	-4.89	-5.82	-1.44	-1.63	-0.22	5.09	4.45	5.18	3.94	4.82	3.60
Id ⁻	4.9	13	-5.00	-4.58	-4.83	-2.46	-2.63	-1.63	4.51	4.05	3.41	4.73	4.66	4.58
BOB ⁻	>4.5	16	-5.95	-6.03	-7.10	-2.87	-3.07	-1.66	5.82	5.88	6.38	4.72	4.78	4.05
4F-BBB ⁻	4.1	33	-4.78	-4.56	-4.10	-1.69	-1.78	-0.81	4.44	4.21	3.46	3.21	3.17	2.79
TADC ⁻	>4.0	15	-3.96	-4.04	-4.35	-1.97	-2.17	-1.07	5.17	5.17	2.48	3.98	3.97	3.72
BNB ⁻	3.9	33	-3.17	-3.27	-2.34	-0.61	-0.76	0.10	2.70	2.82	1.71	1.77	1.81	1.43
BBB ⁻	3.7	33	-3.24	-3.35	-2.85	-0.65	-0.81	0.18	2.91	3.01	1.61	2.31	2.38	1.79

6-311+G(2df,p) basis set and the VSXC functional, and the use of (ΔG_v) does not seem entirely necessary.

Supporting Information Available: Updated Table 1S. This material is available free of charge via the Internet at http:// pubs.acs.org.

References and Notes

(1) Johansson, P. J. Phys. Chem. A 2006, 110, 12077-12080.

10.1021/jp070202i Published on Web 01/27/2007